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1. The Beginnings

he modeling of disease started as far back as the ancient Greeks,

with the epidemics of Hippocrates (459 - 377 BC), Bailey
(1975). John Grount (1620 - 1674) and William Petty (1623 - 1687)
could be considered as pioneers of medical statistics and the
understanding of large-scale phenomena connected with disease and
mortality, but the time was not ripe for anything approaching a
connected theory of epidemics. This was because the requisite
mathematical techniques were themselves only then in the process of
development. Another reason was insufficient knowledge about the
spread of disease. A good start was made in the field of mechanics and
astronomy more than 200 years before any real progress was
achieved in the Biological Sciences (Barley, 1975). Daniel Bernoulli
in 1760 used mathematical methods to assess the effectiveness of
inoculation against small pox, with a view to influencing public
health policy.

The major feature of the beginning of modern scientific
achievement in this field was the rise of the science of
bacteriology in the 19th century. The work of Pasteur (1822 -
1895) and Koch (1843 - 1910) involved mainly the statistical
appraisal of records showing the incidence and locality of known
cases of disease.

The work of Farr (1840) was mathematically sophisticated. He
fitted a normal curve to quarterly data on deaths from smallpox.
Brownlee (1866) used a similar method to predict the course of
outbreak of rinderpest amongst cattle. The curve was fitted to
four rising successive monthly totals and extrapolated values
used for prediction. Although observed and predicted curves
were both bell-shaped, agreement in detail was not very good.

The work of Farr and Brownlee involved more of curve fitting and
prediction.
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2.Mathematical Modelling

Ross (1911) developed a mathematical model for malaria, which
attempted to take into account a set of measures describing
various aspects of transmission. The study of respiratory disease
using a deterministic approach to the heterogeneity of spread of
infection was provided by Becker and Hopper (1983). An
epidemiologic application of sophisticated control theoretic
deterministic modeling was provided by Hethcote (1983).

The age-dependent immunization model was designed to
predict appropriate strategies for disease control. Hethcote
utilized data on measles and rubella to determine vaccination
strategies appropriate for their control at various levels of
immunization coverage.

2a. Analytic StochasticModeling

Deterministic models soon lost their popularity because of their
inability to accurately describe recurrent cycles of disease, Bailey
(1982). When data became more extensive and much smaller
groups were considered, elements of “chance and variation”
became more prominent. Mckendrick (1926) was the first to
construct stochastic models of epidemic processes. Greenwood
(1931) gave an alternative probability treatment five years later,
Bailey (1975).

“Continuous infection” and “chain binomial” stochastic models
were introduced next. These probability models were more
appropriate for dealing with smaller groups in which random
variation would play a larger role. Although these models
achieved popularity they are usually mathematically and
computationally more complex than the simple deterministic
models, Korve (1993).

Stochastic models now appear more frequently in the study of
diseases, Bailey (1975). Kimber and Crowder (1984) proposed a
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model to analyze resistance times to infection under treatment. A
general stochastic model was proposed by Hillis (1979).

Several stochastic models have been presented to describe
distributions of infectious disease over time and space, including
Korve (1993) and Goldacre (1977) who attempted an analysis of
meningitis using space-time clustering techniques introduced by
Knox (1964) to detect the existence of factors associated with
infection.

3.Modeling Approaches for Disease Control

Generally, there are three modeling approaches for disease
control: Deterministic, Analytical stochastic, and Simulation,
usually stochastic.

Deterministic and stochastic models were developed in the early
part of the 20" century. The etiology of disease is of primary
concern to many epidemiologist and can be seen either in a
deterministic or stochastic framework.

A deterministic perspective is one in which factor x cause y if (all
other factors being held constant) a change in the value of x
results in a change in the values of y, in a completely prescribed
way tracing outa mathematical function of some form.

In practice, probability theory and statistical techniques are used
to assess evidence regarding causality. In any causal analysis of
data, the goal is to account for variation in the dependent
variable.

Several models of this sort have been utilized to analyze data in
studies of infectious diseases, including most commonly linear
regression, log-linear analysis, logistic regression, discriminant
analysis, and proportional hazards modeling, Korve(1993).
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4.Probability

The approach to probability used in this work is the axiomatic, in
which probabilities are defined as "mathematical objects" which
behave according to certain well-defined rules. Then any other
probability concepts, or interpretations, can be used, so long as it
is consistent with these rules. Thus probabilities are values of a
set function, also called a probability measure; this function
assigns real numbers to the various subsets of the sample space.
Johnetal (1980).

5. Random Variables

It frequently occurs that in performing an experiment, we are
mainly interested in some function of the outcome as opposed to
the actual outcome itself. For instance, in tossing dice we are
often interested in the sum of the two dice and are not really
concerned about the actual outcome. That is, we may be
interested in knowing that the sumis three and notbe concerned
over whether the actual outcome was (1,2) or (2,1). These
quantities of interest or formally, these real-valued functions
defined on the sample space are known as random variables.
Since the value of a random variable is determined by the
outcome of an experiment, we may assign probabilities to the
possible values of the random variable.

6.Discrete Random Variable

A random variable that can take on at most a countable number
of possible values is said to be discrete. For a discrete random
variable X, we define the probability mass function

p(a)=P{X=a}

The probability mass function P(a) is positive for at most a
countable number of values of a. That is, if X mustassume one of
thevalues x;,x,,......, then
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PLEN &0, ¥=L20w
p(x)=0, all other values of x

Since X must take on one of the values x;, we have
> plx)=1
i=1

7. Continuous Random Variables

A random variable whose set of possible values is uncountable.
Let X be such random variable. X is a continuous random
variable if there exists a non-negative function f(x), defined for
allreal x € (—o,®), having the property that for any set B of real
numbers

P{Xx eB}= L F(x)dx 1)

The function f(x) is called the probability density function of the
random variable X.

Inwords, equation (1) states that the probability that X willbein
Bmay be obtained by integrating the probability density function
overthe set B.Since Xmustassume some value, f (x) mustsatisfy

1= P{X e (~0,0)}= j"; £(x)dx

All probability statements about X can be answered in terms of
f (x).Forinstance, letting

B=[a,b], we obtain P {a SXs b}= J: S (x)dx

8. StochasticProcesses

The family of random variables X (t), t > 0 indexed by the time
parameter t. The values assumed by the process are called
'states’ and the set of possible values is called the state space. The
set of possible values of the indexing parameter is called the
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'‘parameter space' which can be either continuous or discrete. In
the discrete case, the processisrepresentedas X,, n=0,1,2,...

The stochastic process occurring in most real-life situations are
such that for a discrete set of parameters t,, t,,......t, t, T, the

random variables X(t,), X(t,), ... X(t,) exhibit some sort of

dependence. The simplest type of dependence is the first-order
dependence underlying the stochastic process. This is called
Markov dependence.

Depending on the nature of the state space and the parameter
space, we can divide Markov processes into four classes, which
are given here in the form of a table. Wherever the parameter and
state spaces are discrete the Markov process is called Markov
chains. Otherwise the process is simply referred to as a Markov
process or memoryless property.

Table 1: Classification of Markov process

PARAMETER SPACE STATE SPACE
Discrete Continuous
Discrete Markov Chain Markov Process
Continuous Markov Process Markov Process

The other typical Markov processes include Semi'Markov,
Hidden Markov, Markov Decision and partially Observable
Markov processes.

9. Markov Chains

Markov chains is the Markov process with discrete time and
parameter spaces whose state space could be finite or countably
infinite.

Let{X,n=0,1,2,.} be aMarkov chain with a state space SCY =
{0,1,2, ...}. While discussing a finite m-state chain, we shall
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identify the state space S to be given by the set (1, 2, ...m). The
element P,, means the probability that x, = j if you know that x, =

ij?

i.Itis conditional probability
ija=p(x1=jlxﬂ:i) -

In the time homogeneous Markov chain the n - step transition
probabilitiesis defined pii[n] =p(X,=i|(X,=1)

The conditional probability P(X =j|X,_,=i) is referred to as one
step transition probability from i to j at time n. If for all m and n,
P(X,=j|X,.;=1) =P(X,=j|X,.;=1) the Markov chain is said to be
stationary. Stationary and time homogenous are synonymous.

10, Markov Chain and Classification of States
The value of x, for a specificrealization of the process s called the

state of the process.

Definition (1): State j is said to be accessible from state i if j can
bereached from i ina finite number of steps. If two states i and
j areaccessible to each other, then they are said to communicate.

It has been shown Bhat (1984) that all the states that

communicate in a finite Markov chain form an equivalence
relation.

Definition (2):- A state i is said to be recurrent if and only if
starting from state i, eventual return to this state is certain.

In terms of probabilities fii this implies that the state i is
recurrentifand onlyif fii=1

Definition (3): A state i is said to be transient if and only if,
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starting from the state, there is a positive probability that the
process may not eventually return to this state. This implies that

fii<1
Definition (4): A state i is said to be an absorbing state if when
entered cannot be departed, also if and only if P, = 1. When i is

absorbing fii' = P;=1agdhencefii=1.

11. Non-Homogenous Markov Chain
In modeling the non-stationary transitions and time variation
effecton the transitions,

Let transition matrice

M= f‘j(k), L=k 2.3 and bE<=1.2...
and P, = £;(k)
f; (k) denotes the transition count from state i to state j forthe
season k. P; (k) is the transition probability from state i to state |

for the seasonk.
Accordingly,

fy (k)

(k)

where f, Zﬂ £, (k)

|

=1:2... anwd I7=71,2,3.m

pP,(k) =

12. Test for Stationarity of the Probability Matrices
Totestforindependence of P, on K.the Null hypothesis is stated
thus

Ho: P,(k)=P, foralli, j=1,,3 and for all k

H;: P;(k)dependsonK.
The likelihood ratio test for the above hypothesisis
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M =23 M, = [fff:l

k=1

where f, = Z £, (k)

k=1

The maximum likelihood estimate of the stationary transition

probability matrixis
p = Ju
i Ji

where f, = Z K
J=1

The A, the likelihood ratio criterion is given by

) b 1O
A = ij
1111 [P (k)]

=2Inh. = % 2uexz-n

where m is the number of states and T is the time parameter. We
evaluate A, and calculate - 2 In A . We then get the critical value of
x’at a significance level and compare it with - 2 In A. Itis then
decided to accept or reject the Null hypothesis. With the
acceptance of H,, we have a homogeneous Markov chain model.
Otherwise we have the non-homogenous Markov chain model,
Bhat (1984).

The stationarity assumption is one of 'constancy’ over time. It
suggests stability of the process, although of course it does not
imply that the process remains in fixed state or even that there is
a sluggishness in the rate at which transition occur. It is the
probability mechanism that is assumed stable Ross(1989),
Chung(1967).
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n-step refers to the time interval between observations. In the
matrix form

and = P*f:l
]
Z pij(n =l
we have 3

13. The n-step Transition Probability Matrix
The n-step transition probabilities P, ™ and the unconditional

probabilities P, - 1 j, € Saredetermined by the following.

p™=p"
and P™=p“p"

14. Ergodic Markov Chains

When the processisirreducible, recurrent, and aperiodic, we call
the Markov chain ergodic. When the model is ergodic, several
additional quantities, other than the transition probabilities can
easily be calculated. Two of the most important of these are
steady - state probabilities and mean first passage times.

Mathematically, P and P™*" are essentially the same for large n,

P(ﬂ]= P[“*I) p
and ; .
Iim p™=lim p=+vp

n=4m Nk o0

nt =x P
and

Feller (1971), Howard (1960), Stidham (2000) and Uche (2001).
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15. A Review of the Methods of Determining the Steady

State Probabilities in an ErgodicMarkov Chain Models
Itis observed that the most common type of Markov chain model
in practical applications is of the ergodic category. When the
model is ergodic, several quantities such as the transition
probabilities, occupancy probabilities, first passage
probabilities, mean first passage times and of course the steady-
state probabilities can be calculated Ross (1989), Bhat (1984)
and Howard (1960). The techniques include the matrix
multiplication, the linear equations and substitution method and
the transition diagram approach

16. Matrix Multiplication Technique
This is the most popular method. It involves the multiplication of
two matrices defined thus: suppose A = (a;) and B = (b;) are

matrices such that the number of columns of A is equal to the
number of rows of B; say Ais an M x P matrix and B is P x n matrix,
then the product AB is the m x n matrix whose ij entry is obtained
by multiplying thei” row A of Aby thej" column B'of B.

Symour (1981)

The n-step transition probabilities are defined by

The equation can be represented in matrix form by
P = prp

where P" is the matrix whose elements are the n-step transition
probabilities. In general, the n-step transition materials equal the
one-step transition matrix raised to the n" power.

In introducing the steady state probabilities, we observed that
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the rows of the n-step transition matrix repeat themselves when
n is sufficiently large. The most important advantage of this
method isthatitlendsitselfto a computer implementation.

17. The Linear Equations/Substitution Method
Letus define the steady state probabilities thus:

L 7 = ll_m RJ'H

T Ty Ty
asngrowslarge, p" = n, n, m,.........

W M Mgntibon

As long as the process is ergodic, it has been proved Ross (1989)
thatsuch limits exist.

Itis tedious to find the steady-state probabilities by taking higher
and higher powers of P, particularly when P is larger. However,
we can generate large equations to determine them directly as
follows:

Pn=Pr:-IP
lim?" =lim?"'P

This represents many replications of the same set of equations
m=nP

This set of equations has many as unknown. It is a dependent set
and therefore posses an infinite number of solutions. The
dependence is derived from the fact that every row of P sum to
unity. One of the infinite number solutions will qualify as a
probability distribution. This one solution can be forced by
requiringthatm; sumto 1, thatis Y, =1

allf
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To those previously expressed and the resulting set of linear
equations will posses a unique solution satisfying all the
requirements of a probability distribution.

This method although not very easy produces the exact steady-
state probabilities.

18, The Transition Diagram Method

This is a kind of physical analog to the determination of the
steady state probabilities. The approach is to think of the points
as small reservoirs and the arcs as connecting pipes through
which liquid can flow with valves to ensure that the flow goes
only in the direction of the arrow. The probability P; associated

with any arc is to be thought of as the fraction of the liquid in
reservoir i that will pass to reservoir j in one transition time unit.

One unit of liquid is poured into the system. After a while, a
dynamic equilibrium is attained; the liquid continues to flow, but
the amount in every reservoir remains constant. When this
happens, the amount in each reservoir gives the steady-state
probability for the corresponding state, they are proper
probabilities because they are nonnegative and sum to unity.

The necessary condition for steady-state is that the flow into any
reservoir must equal the flow out, because if the two were not
equal, the amount in the reservoir would be changing. If this
condition is met for all reservoirs, itis sufficient.

Foranyi,

Flow out= ERP,} s nj.zi P =n,
Since > 7, = 1

Flowin= Z kP,
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Hence m; = 2 mkP,; for all i, or, in matrix form 7 =P

If we think of the liquid in terms of its molecules. A trajectory of
an individual molecule describes a realization of the stochastic
process. The effect of pouring in many molecules is to consider
many realizations simultaneously. Hence, we are using in effect, a
statistical mechanics dpproach. This technique is used in
chemical diffusion models in electronics and elsewhere,

19. Conclusion

The steady state probabilities are determined exactly by the
linear equations method and are approximated by the matrix
multiplication approach. The transition diagram method is
applicable to objects that can flow through reservoir and pipes
such as theliquid and gases.

20. MarkovProcesses
Consider afinite (or countably infinite) set of points (t,, t;,.... t,t),

L<t<tu<t<tandt t. T (r=1,2 ..n) where T is the
parameter space of the process {X(t)}. The dependence exhibited
by the process {X(t)}, t € T is called “Markov - dependence” if the
conditional distribution of X(t) for given values of X(t),
X(t;)....X(t,) depends only on X(t,) which is the most recent
known value of the process. :
thatis, if
PIX(t) <x|x(t,) =X, X(t, ) =X, 5, . X(ty) = Xo]
=P[x(t) <x|x(t,) =x,]
=F(x,x:t,t) (2)

The stochastic process exhibiting this property is called a
'Markov Process'. In a Markov process, therefore, if the state is
known for any specific value of the time parameter t, that
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information is sufficient to predict the next behavior of the
process beyond that point.

Continuous time stochastic process is similar in many respect to
discrete time stochastic processes. However, complexity does
occur because each infinitesimal time is available as a possible
transition time.

As a consequence of the property (2), we have the following
relation:

F(Xo X: tg, £) = [yes F (3 %, t, 1) dF (X, Y, ) (3)
wheret, <t < t and S isthe state space ofthe process x(t).

When the stochastic process has a discrete state space and a
discrete parameter space, (2) and (3) take the following forms:

Usingthis property, form <r<nwe get
p— v p m0p (©n) 4
Tk @

we have againused S as the state space ofthe process.

Equations (3) and (4) are called the “Chapman-Kolmogorov
equations” for the process. These are basic equations in the study

" of Markov processes. They enable us to build a convenient

relationship for the transition probabilities between any points
in T at which the process exhibits the property of Markov -
dependence.

Above is the Chapman-Kolmogorov equation in general form, we
shall useitin the special form of

B (t+A)=) P, () B, (A)
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This equation requires the Markov assumption to permit a
multiplication of the probabilities veferring o evetitsiduring 't
and toevents duringiit.ivalso requires stationary td'permituse
of 4hesamerprobahilityi functions: fori tHe intervdl:thand for the
lptenintervalidhy mobnst 5 2i enoilizner svizearuz ow

toitienr! sdi idw momn 93sie adi no brisqab v noitud i13eib
P,(t) functions are probabilities, for all t. they are nq)__g,_}gﬁig%]}}'&

bounded functions because they mustlie between 0 and 1.
dP_(t) omiT guibloH \amiT gniticW .S<
ol B =0 L,P (t‘)k»k*} i 2z2a0nq odl vd dnsaz amit sdi 1ald
VRS b i J] 22930 91k ;\_,_.:=_.-...,..., 91y 35
oMY 6 ok oisie 2i moidiznsT? 3xsn o3 1sd) naviy (noitienst
The result is an exact (notapproxinvate) differential equation for
Py(t) in terms of the Py (t)

. Itisa lipgar,rf#irst; order fiifﬁerential
o 4 Y L 4 s \!.‘ =l \ ? : Ry ’¢-r‘jj irf:“':.i-rvi] 1= ;\‘1-1 v
equation with tonstdnt coefficierits A,.'s. ~*
79 St I--;-u_;,:-,e;;au‘é‘, 911} u?'[;r :ﬂ? oi%ﬁlmsv miobrst odT m......S

a3 .. Xsigle adi bag batiziv gnisd X aiste adiaa zbrsgsh noitisw
Fiecdgmsm‘g the above surfl as matrix multiplication, we may

express all of the diffarential équition atonice ' the matrixform

wimsMlilidsdonS aoitiens T isviainl LES
t V
= P(t)A

dt 0 <1 1oibns (. ls10M
Where dP(t)/dt is the matrix whose (i,j)" element is dP,(t)/dt.
P(t) is the matrix whose (i}j) i element igfiiu(f),a hid Alis the rhatrix

(N
L

whose (i,j)" elementis A,
(V,0 {-I= (V)i st
The elements of A may be further related by extending the
properties of P(t); so that for each i, egchirop-of A must sum to
zero. Since off-diagonal element is non egative, the diagonal
element A, must be equal in magnitq}dfe‘ ﬂd‘&bposite in sign to

the sum of otheisin thesasherows, Thatfs itz |~ %) = & b
A= _Zl i
#
Howard (1960)
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21. Semi-Markov Processes
A semi - Markov is a process in which changes of state occur

according to a Markov chain and which the time interval between
two successive transitions is a random variable whose
distribution may depend on the state from which the transition
takes place.

22. Waiting Time/ Holding Time
Let the time spent by the process in state j before its next
transition, given that the next transition is state K be a random

variable Ty, having distribution function

W, () =P [Ty <t]=P(t,, -, <t/X; =), X, =K) ], K= 1,
2,...m. The random variable T, called the Surjourn time or
waiting depends on the state X being visited and the state X, , , to
be entered in the very next transition Iwunor (2001).

23. Interval Transition Probability Matrix

Forall i, j andfor t > 0
0,(t) =8, hi(O)+ Y Py [ fi (X0, (=),
K 0

where hi(t)  =1-) ¢, (1)
=1-W, (1)
=P(T;>1)

and 6, = {7 isthe Kronecker's delta function.
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In a summary, suppose thata process can be in any one of N states
1, 2,........N and that each time it enters state i, it remains there for
a random amount of time having mean M, and then makes a
transition into state j with probability P, . Such a process is called
a semi - Markov process. We note that if the amount of time that
the process spends in each state before making a transition is
identically 1, then the semi - Markov process is just a Markov
chain. Thus a Markov process is a semi - Markov process but the
converse is nottrue Iwunor (2001) and Howard (1971).

'
24. Markov Decision Processes
Bhat in 1984 summarizes the definition of Markov decision
processes thus; Markov decision processes bring together the
study of sequential decision problems of statistics, and the
dynamic programming technique of applied mathematics and
operations research.

Consider a process that is observed at discrete time points to be
in any one of m possible states, which we numbered by 1,2,3,...m.
After observing the state of the process, an action must be
chosen, and we let D, denote the set of all possible actions, we
assume Dis finite.

[fthe process isin stateiattime n and action kis chosen, then the
next state of the system is determined according to the transition
probabilities P,.

Following Ross (1989), let X, denote the state of the process at
time n and K, the action chosen at time n, then the above is
equivalent to stating that

P(X...=i/Xo Ko X, Ky X, =1, K, =K) = Kpii
Thus the transition probabilities are dependent on the present
state and subsequentaction.
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Definition (8): A policy - byxa policy we mean a rule for choosing
actions. A policy is a sequence of decisions, one for each state of
the process. =

Definition (9): Dynamic programming is an approach for
optimizing multistage decision processes. It is based on
Bellman's principle of optimality.

25. Bellman's Principle of Optimality

An optimal policy has the property that regardless of the
decisions taken to enter a particular state in a particular stage,
the remaining decisions must constitute an optimal policy for
leaving the state, Bellman (1957).

Consider a Markov chain with state space S. Suppose with every
state we associate a decision to be chosen out of a set D which
depend on P, be the probability of the transition epoch.

Let “P, be the probability of the one step transition from'i to j. i
€S under decision K € D.

Also we associate a reward “R,with decision Kand transitionito]
. Knowing the set of alternatives in the decision set and the
corresponding transition probabilities and rewards, the
objective of the process is to select the optimal decision under
certain criteria. When we associate rewards with every decision,
maximization of expected reward over a given time horizon s the
natural criterion.

If cost are associated with decisions; costs are essentially
negative rewards and so minimization of expected costs is called

for.

Let v ™ be the expected total earnings in n future transitions if

22 Federal University of Technology, Minna



decision K is made when the process is in state i. For the optimal
decision K= 0 if it exists; we have

vo = maxy, ‘B ER 7] 123 0es

keD jeS

Thisisa functional equation satisfied by the expected reward.

26, Markov Reward Processes
Consider an aperiodic, irreducible Markov chain with m state

(m < and a transition probability matrix. With every transition i
to j associate a reward R,. If we let V" be the expected total
earnings (reward) in the next n transitions, given that the system
is in state i at present. A simple recurrence relation has been
shown considering the transition probability matrix P and the
reward matrix R asgiven. :

Instead, suppose that the decision maker has other alternatives
and so is'able to alter elements of P and R. To incorporate this
feature, define D as the decision set, and under decision K € D, let
“P, and "R, be the probability of the transition from i to j and the
corresponding reward re$pectively for ‘v The expected total
earnings in n transitions under decision K; we have the

recurrence relations (K=0 represents the optimal decision)
07/(n) _ O & k Oprcaeay |oigsi .
¥ -maxm)z PUI: R,+V,'™" n=12,..,i=12,.m
J=1 R
giving
b ARE max*eﬂ[*Q; + Z ‘P UVI,.”_” i=12..mn=12

j=l

where we have written ) P,*R =0,

7=l
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Recursive relation gives an iteration procedure to determine the
optimumdecisiondi™ e D.For i=1,2..m and n=1,2...

This is a Standard technique in Dynamic programming and it has
been shown Bhat (1984) that this iteration process will converge

on bestalternative for each stateas n » ©°,

Since the procedure is based on the value of the policy (total
earning) forany n, itis called the Value Iteration Method (VIM).

The method is based on recursively determining the optimum
policy forevery n, thatwould give the maximum value.

One major drawback of the method is that, there is no way to say
when the policy converges into a stable policy; therefore, the
value iteration procedure is useful only when n, is fairly small.

27. Markov Decision Processes and Linear Programming
A Mathematical program is considered to be a standard linear
program ifitis ofthe form.

Minimize Z=CX
Subject to

Ax=b
X=0
where
[y, @y =« »
d a P |
21 22 2n X! b.
A s 3 X =i X2 'Jb = b2
mxn " ’ s P : mx] mx
(mxi) (mxl) X3 (mxl) bm
a, 4, . . . a4, |
C =C,, Cy,.. .Cn], Abubakar (2005c)
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Linear programming is an optimization technique. It receives so
much attention in recent years due to the availability of the
methods of solution to the general linear programming problems
involving large variables Diego and German (2006) and
Abubakar (2005). Linear programming formulation of Markov
Decision processes has been reported also in Diego and German
(2006) and Tijm (1988).

According to Kurkani (1999), Puterman (1994), Goto, et al
(2004), Hillier and Lieberman (1980); we consider a Discrete
Time Markov Chain (DTMC) {X,, n = 0, 1...}, whose transition
probability matrix depends on the action taken A,. Additionally,
the system incurs a cost ¢( i, a) when an action a is chosen at
some state i. Then the joint process {(X, A ), n=0, 1.}, is a
Discrete Time Markov Decision Process (DTMDP).

The policy-iteration algorithm solves the following average cost
optimality equation in a finite number of steps by generating a
sequence of improving policies.

Itwas observed in Abubakar (2011b) thatthe finite convergence
of the policy-iteration algorithm implies that numbers g*and v*, ,
i € [, existwhich satisfy the average costoptimality equation

vi= Zhofal@) = g+ L py(v) i€l (5)

I is the set of states. The constant g* is uniquely determined as
the minimum average cost per unittime, that is

g'= R"g(R)

Moreover, each stationary policy R* such that the action R’
minimizes the rightside of (5) forall i € [ is average cost optimal
Tijm (1988).
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Moreover, each stationary policy R such that the action R,

minimizes the rightside of (5) forall i € [ is average costoptimal
Tijm (1988).

Another convenient way of solving the optimality equation is the
application of a linear programming formulation for the average
costcase.

T b > " )
Min o7, asA(i) f(i,a)e(i,a)
subject to

n,= X

J asa() TiPi; (@) JES Balance equation

f‘ ey f(i,a) = 1 Normalization equation, Sisthesetof
all allowable states.

This model is notlinear. But if we define new decision variable,

x,, =m, f(i,a),i €5,a € A(i) , then we can build an equivalent
linear model. The meaning of x, is the long run fraction of the
time thatthe systemisinstateiand action ais chosen.

. is EsA(i) c(i,a)x;,
subject to
E;A(s) Xja - :'XES-(j) Em(s) p;j (@) x;,=0 JES
:Ess Em(s) Xig =1
x,. 20, 1€5,a€A)
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Where 57(j) is the set of possible predecessors of state . i.e.
S"()={i:j€ 5(i,a) for somea € A} .

Denardo and Fox (1968) and Goto, et al (2004).

28. The Exponential Distribution Functions and the
Application to Markov Models

In making mathematical models for a real- world phenomenon
itis always necessary to make certain simplifying assumptions so
as to render the mathematics tractable. One simplifying
assumption that is often made when modeling with Markov
principle is to assume that certain random variables are
exponentially distributed. The reason for this is that exponential
distribution is both relatively easy to work with and is often a
good approximation to the actual distribution, Ross (1989). An
important simplifying assumption in making Markov chain
models is that the time it takes to make a transition (random
variable) be described by negative-exponential distribution.

29. The Exponential Distribution
The probability density function of the random variable T having
the exponential distribution is

Ae ™ 5030
=g “res

Kohlas (1982). The distribution has X as a parameter. X also
determines the shape of the distribution.

The mean is 1/A and the variance is (1/A)°. Thus the mean and
variance are not separately adjustable, as one may frequently
desire.

Figurel plots this function for three values of A. Notice that the
function intercepts the vertical axis at A, that it diminishes
monotonically to zero (asymptotically), and that the rate of

Inaugural Lecture Series 57 27



g .

= convergence is proportional to A. The total area under the curve
is, of course, always equal to 1, as it must be for any density
function. -

F 9

f(r)

v

Figurel: The graph of Exponential

Most applications are based on its 'memory-less’ property, when
the measurement variable T has a time dimension. This property
refers to the phenomenon in which the history of the past events
does not influence the probability of occurrence of present or
future events.

According to Ross (1989) A random variable X is said to be
without memory, or memory-less, if

P{X>s+t|X>t}=p{X>s} foralls,t20

Following Feller (1971),” We shall refer to this lack of memory as
the Markov property of the exponential distribution”.

30. The gamma distribution
The density f(t) givenby
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f(t)y= 222 -2 ¢20,
(t) o T

where the shape parameter o and the scale parameter A are
both positive. Here I'(a) is the complete gamma function defined

by (o= [ e~tta-lar >0,

And having the property r(« +/) = « I'(«) forany o > 0. The
probability distribution function
F(t) may be written as
- L At -u a |
F(t) *r(:x}fﬂ e us~1dy - t20.
The latter integral is known as the incomplete gamma function. If

the shape parameter « is a positive integer k, the gamma
distribution is the well-known Erlang-K ( £,) distribution.

The Erlang-K distribution has a very useful interpretation. A
random variable with an Erlang-K distribution can be
represented as the sum of k independent random variables
havinga common exponential distribution.

31. Thelognormal distribution
The density f(t)is given by

where the shape parameter a is a positive and the scale
parameter A may assume each real value. The probability
distribution function F(t) equals

(£)—24
F(t) = (™

Thus a unique lognormal distribution can be fitted to each
positive random variable with given first two moments.

), t>0,
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32. Weibull distribution
The density f(t) is given by
fit) = an(at) e 1e@)? >0,

With the shape parameter « > 0 and scale parameter A > 0. It is
observed that the Weibull distribution reduces to the
exponential distribution when the shape parameter is unity.

Lognormal

1.20
1.10
1.00
0.90
0.80
0.70 |
0.60
0.50 |
0.40
0.30
0.20

0.10

9

0.00

0.00 0.05 1.00 1.50 2.00 2.50 3.00

Fig. 2: The gamma, lognormal and weibull densities with E(x) = 1 and
-
c: =0.25.

Source: Tijms (1988).
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Itis observed that the Markov and stationary assumptions imply
that the times between events must be negative-exponentially
distributed. The parameters of these distributions, the A;'s may
be dependent on the state occupied, i, and the next state, j, but all
of the distributions must be of the negative exponential form. No
other distribution family can even be considered as a candidate
for describing the times between events.

It was mentioned that in many applications, the times between
events are most naturally conceived of as having a density
function of the general form shown in Fig. 2 (perhaps a gamma or
weibull or lognormal). That is, one tends to think in terms of
some nominal value, the mean, plus or minus some relatively
minor variation. Or, put another ways, the most likely values are
considered to be clustered about the mean, and large deviations
from the mean are viewed as increasingly unlike. However, the
form of the negative exponential density functions implies that
the most likely times are close to zero, and very long times are
increasingly unlikely. If this characteristic of the negative
exponential distribution seems incompatible with the
application one has in mind, perhaps a Markov model is
inappropriate.

This is an important understanding to be able to distinguish
between those processes which might properly be modeled as
stationary Markov process and those which should not,
Abubakar (2011a).

33.Practical Applications by Me
The followings are some of my applications and contributions to
the study of Markov Processes.

A Study of Leprosy Disease and Human Health Condition

33a. Definition of Leprosy
Many definitions of leprosy exist, but Hunter, et al (1966) defined
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leprosy as a chronic infectious disease primarily of the skin and
nerves caused by Mycobacterium leprae. It is one of the least
infections of all the infectious diseases. The incubation period
varies from less than a year to many years, but probably averages
three to five years.

33b. TypesofLeprosy

Several variants of the disease are demonstratable, but the
disease can be divided generally into two polar types;
tuberculoid and lepromatous. A transitional or demorphous type
may show a variable degree of similarity to the tuberculoid or the
lepromatous types depending upon which pole itapproximates.

33c. The Leprosy Model

We considered a leprosy patient. Let us assume that each year the
leprosy patient is under treatment or has recovered from the
disease or hasrelapsed or has died from the disease.

We therefore have a four state process thus:
State 1 - Under treatment, State 2 - Recovery, State 3 - Relapse,
State 4 - Death due to leprosy.

These states are assumed to be mutually exclusive and
exhaustive. The transition from one state to another is indicated
in the transition diagram shown in figure 3.

ok (1

Ok 120

Figure 3: Transition diagram for leprosy
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We observe thatstates 1, 2 and 3 are transient states and state 4 is
an absorbing state. In other words, all possible transitions of the
process are made between states 1, 2 and 3 but once a transition
is made to state 4 the process terminates. We would like a
transition to occur at a time the duration of stay in a state is
completed, even if the new state is the same as the old. Such a
transition is called virtual transition, and is represented by loops
inthe transition diagram.

From the above transition diagram we can record the transition
probability matrix 'P' for the process as shown below:
’VE] RZ ‘F;3 F'I4
6 B B ©
B B Py O
lo o o r,]

Let P, be the probability that the leprosy patient who isin state /'
on his last transition will enter state 'j' on his next transition, i, j
=1,2,3, 4. The transition probabilities must satisfy the following:

B, 20,4j=1,2,34.

and i};:l, i=1, 2, 3, 4
=1

Whenever the patient enters state 'i' he remains there for a time
T, in state i before making a transition to state 'j'. T} is called the
‘holding time' in state i. The holding times are positive integer
valued random variables each governed by a probability
distribution function f, () called the holding time distribution
function for a transition from state i to state.

Thus P(T,=m)=f,(m). m=1,2,3,...
j=1,2,3,4.
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We assume that the means g, of all holding time distribution are

finite and that all holding times are at least one year in length.
Thatis,

ﬁ:‘(o):O

To completely describe the semi-Markov process we must
specify four holding time distribution functions in addition to the
transition probabilities. For a fixed value of i T, is the same for
eachvalueofj, (i,j=1,2,3,4).

Figure 4 shows a portion of a possible trajectory for the leprosy
patient.

N
state

/

L e

Time in years

Vv

Figure 4: A possible trajectory for the process

33d. Effectiveness ofthe Treatment

When the leprosy patient undergoes treatment, it is expected
that the treatment should have an effect on the disease. This
effect should be noticed in the increase in probability of recovery,
a decrease in the probabilities of death and having a relapse. An
appropriate measure of this treatment effectiveness is obtained
from the following expressions.

EIZ = (1 +k)PlZ

E,=(1-kK)P, j=3,4
where k isapositive realnumberin the interval [0, 1). Then
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By =1— ZEU
F=2.

and the transition matrix is Pwith the firstrow replaced by E,. ] =
1,2,3,4, Abubakar (1995).

PROBLEM 1: A 10-year follow-up of a 6-week quadruple drug
regimen for 136 multibacillary leprosy patients showed 13%
relapses, seven late and the remaining (111) were considered to
have recovered from leprosy, Pattyn, etal (2002).

The above is considered to be the situation at present; it is of
interest therefore to determine recovery, relapse and death of
Leprosy in the near/ distant future.

33e. Results

0.8—|

0.6 - =
C) —+K=0 |
8 04 |
o —4 K =0.50

0.2 -

0 T T T T T T T ;l—_T__| Kzoig

01 2 3 4 5 6 7 8 9 10 11 12
Times in Years

Figure5: The Probability of beingin state 2 having started from state 1

0,,(n) is the probability of recovery from leprosy at time n given
thatthe patient started treatmentat time zero.

0.25

= 0.2 —— Series!
o 015
o —— Series?
0.1 P —
0.05 -/r".—_-_ —a— Senes3
G el L hr - L i bl i ol e e *
8] 1 2 3 4 ) 6 T &8 a G 11 32

Timesin Years

Figure 6: The Probability of being in state 3 having started from state 1
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This is the probability that a leprosy patient will be a relapse in
year n given that the patient was under treatment in year zero. It
alsorepresents the probability thata leprosy patient will develop
aresistance tothe drug.

0.12 -
0.1 - o

Q14 (n)

0.08
0.06
0.04

—+— Series1

—a— Series?2

—+— Series3

0.02 4
0 e rie—y

G 123 48 6 7 -8 9710192

Times in Years
Figure 7: The Probability of being in state 4 having started from state 1

(14(n) is the probability that a leprosy patient will die in year n
given that the patient was under treatment in year zero.

33f. Conclusion

We observed from the graphs that when the treatment is 99%
effective, the probabilities of relapse and death from leprosy has
been reduced to zero and consequently increased the probability
ofrecovery to unity.

Thus, we wish to submit that the Semi-Markov model could be
used as a predictive device to study leprosy conditions. Such
predictions could be useful to the government and non-
governmental organization for the management of resources for
the control of leprosy disease, Abubakar (1995,2004a,2007).

34. A Study of Disability in Leprosy in Niger State project
Area

Let state 1 be a new case of leprosy; A case of leprosy is a person

showing clinical signs of leprosy, with or without bacteriological
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confirmation of the diagnosis, and requiring MDT and has never
been treated previously with anti-leprosy chemotherapy.

Let State 2 be a new case who has undergone a disability
assessment with a WHO disability grade 1. (Hands and feet;
anaesthesia present, no visible deformity or damage present.
Eyes: eye problems due to leprosy presentbut vision notseverely
affected as aresult, (vision 6/60 or better; ability to count fingers
at6 meters))

State 3 is a new case who has undergone a disability assessment
with a WHO disability grade 2 (Hands and feet; visible deformity
or damage present. Eyes: severe visual impairment. (vision
worse than 6/60; inability to count fingers at 6 meters) WHO
(1997) and ILEP (1998). We assumed that all the states
communicate.

PROBLEM 2

The following is a summary statistics for WHO disability gradel
and grade2 in leprosy in Niger state project area for a period of
nine years.

Table 2: WHO disability grade1 and grade2 in Niger state project

area
Year 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
New 58 344 570 324 452 83 56 79 158

cases
Disability | 10 193 342 272 348 78 47 62 136
Grade |
Disability | 48 151 228 52 104 5 9 17 22
Grade 2

Given that the present conditions of disabilities in Leprosy are as
shown in the table, it is important to investigate these conditions
in the near future/long run.
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34a., Results
We obtain the interval transition probability illustrated in figure
8.

[+X.]
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Figure 8: The Graph of Probabilities of Disability in Leprosy

34b. Conclusion

It could be seen from the graph that the probabilities of obtaining
a patient with adisability gradel attained an equilibrium of 0.7 in
eighteen yearsand that of grade 2 stabilized at 0.3 in fifteen years.
Thus, leprosy patients with grade 1 and grade 2 disability are not
likely to exceed 70% and 30% in the next eighteen years and
fifteen years, respectively. In view of the fact that the duration of
treatment and types of drugs for the treatment of leprosy are
dependent on the disability grade; this result could be useful to
the government and Non-Governmental agencies in the planning
of resources for the control of leprosy in Niger State, Abubakar
(2005b).
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35, ADiscrete Time and State Case of A Study of Disability in
Leprosyin Niger State project Area
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Figure 9: The Graph of Probabilities of Disability in Leprosy

35a. Conclusion

The result shows that the new cases of leprosy that can be
identified to be of disability grade 1 and grade 2 will increase
steadily and then attains a stable probability of 0.6 and 0.25 in
fifteen years and twelve years respectively, Abubakar (2005c).

36. A Study ofthe Cost of Treatment of Leprosy Disease
PROBLEM 3
We determine the best alternative in terms of drug-type and a

possible minimal costin the treatment of leprosy disease.

Results _
Theresultis presentedin table 4
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Table 3. A Summary result of the Optimal Policies and Costs

n | di® | dx® | dzm) [ oy () | oy,(m) | oy5(n)
i 2 1 2 1,200 | 2,300 | 2,400
- 2 2 Z 2,850 | 4,450 | 4,160
3 2 2 4 4,340 | 6,260 | 6,020
s 2 2 2 5,900 | 7,880 | 7,680
5 2 2 2 7,480 | 9,470 | 9,270
The results revealed that except for the d, ™ = 1 with the

corresponding °V," = 2,300, the best policy for the other states at
each time is the alternative 2. This means that the best policy for
each other state at each time is the second alternative. This is a
kind of convergence to a stable policy. This type of convergence is
not generally true of this iterative algorithm, however, it makes
this illustration very interesting Abubakar (2007, 2004a),
Abubakar, etal (2007). '

37. AstudyofBlood Inventory in General Hospital Minna
General Hospital Minna is a typical city hospital in Niger state
Nigeria. It is a government owned medical out- fit that provides
health serves to the populace at a subsidized price. Blood bank
management is one of the important services rendered in the
Hospital and itis highly patronized.

A major complication to the blood donation and transfusion is
the existence of different blood types among humans and the
matching. The eight types of blood that existin human are: A+, A-,
B+, B-, AB+, AB-, O+ and O-. These blood groups have complex
substitutability pattern and could be regrouped into O, A, B, AB,
Jevwia (2014).

Let the state space of the process be represented as follows:
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Statel: Blood group O, State 2: Blood group A, State 3: Blood
group B, and State 4: Blood group AB.

It is assumed that the states are mutually exclusive and
exhaustive.

A summary statistics for 4 years for the monthly transfused
blood in the General Hospital Minna is presented in table 3.

Table 4: A frequency table of blood transfused in the General
Hospital Minna between 2010-2013

State 1 2 3 4
Frequency | 3968 280 472 116

PROBLEM 4:

It is assumed that the probable supply and demand of blood in
the General Hospital Minna (GHMX) changes in two major
periods from January to August with a low supply/demand but
with a high supply/demand from September to December of the
same year. It is important to establish the above assertion and
also to determine the probable transfusions of various bloods in
the Hospital in the future.

37a. Results

The null hypothesis (H,, of constant transition probability matrix
is therefore rejected and we have non-homogenous Markov
chain model. That is, the demand/supply of blood changes in the
two periods.

The result indicates that blood group O is being transfused to
blood group O, A, B, AB with probabilities of 0.81, 0.06, 0.11 and
0.02 respectively in January to August. This is in contrast to the
probabilities of 0.75, 0.08, 0.13 and 0.04 respectively in
September to December in the same year.
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These set of probabilities, indicates; that) the blood transfused
fromblood group O to blood groups-4, B;and %ﬁrefahqutﬂﬁh&n?.

and 0.9 percent respectively. The result shows that the reception

of blopd by blood growp ABfronybleod.group# and-hlood group
Bisabout1.7% and 0.9%, respectively. avit2uedxs

The result alsosindicates that.thexe willbe little,variationin the
blood megded, for. transfusion in the future onsthe) basis: of the
present Jevwia (2014) and Abubakaretal (2014).
Ig19nad arl ni bszitzns1d boold 1o aldsl yuasupet A 3 oldeT
37b Conclusion £I10S-010S noawlsd enniM [sdiqeoH
nformatmr,g about the, blood needed for transfusion agd
bloa bank inventory are very important for a,successfu”wa‘[ﬂl
care) délivery. ¥ such infofmtation i$cCavailableyinevepy tity
hospital, it may be possible to move blood from one hospital to
anotherdurmgemergency +MEIR0A9

1 | bamuzze 2i 3
1o brsrmab b e aldedo )9 G213

3& AStudw of Human, Dallyﬂeall;h Candlﬂan l lgsnog sd
Supposethat at:the beginningef each day thehealth condltwn af
aman is observed and classified-asigood health or poor-health: If
he: isifound itovhave: podrilHealthy hei isi given: either a “first
aid/preventive: treatment 'orscuvative) treatment 'so ‘that the
health condition could change to good healthand could attendto
his usual activities.

zilzsd 6VE
Suppose also that hecould be foundin good health conditionisi'=
V,2).1:N Thegood healtheonditionids betteb thani+ 1 Thatis'the
cotidition deteriopdtes id time) M eie presént éonditionis irand
does not fall ill, then at the beginning of the next day-thé¥i'he has
good health conditions j with probability P Itisassumed that his
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requires treatment taking two days. For the intermediate states i
with 1 < i < N there is a choice for him to preventively take
treatment so that he could remain in good health condition for
the present day. Let a first aid/preventive treatment takes only
one day at most and a change from poor health to a good health
(after treatment) has agood health conditioni=1.

PROBLEM 5:
We wish to determine a rule which minimizes the long-term
fraction of time the man will undergo treatment.

38a. Results

We obtain the minimum fraction of days that the staffis in a poor
health condition equals 0.214; and to have assumed a cost of one
unit for each time of treatment we therefore have that value as
the average cost optimal for the treatment.

38b. Conclusion

The relative value associated with the policy obtained represent
both the fraction of time in the long-run that the staff could beina
poor condition of health and perhaps absent from work, and the
minimal cost incurred in the treatment. This could be
determined for each staff so that for the staff whose value is a
large contrast to the minimum of the other staff of the company
could be considered as being in poor health condition quite often
and therefore unproductive and may be retired. The cost
obtained is not very realistic; it could be determined by other
methods.

39. Linear Programming Approach to Markov Decision
Model for Human Health Condition

PROBLEM 6:
There are three methods of solving Markov Decision problem;
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the first is the Value iteration method used in problem 4. The
second is the policy iteration method applied in problem 5. The
third method is the linear programming formulation (of problem
5)andis theissue addressed in problem 6

According to Abubakar (2011b) the linear program has the
optimal basic solution

X}y = 06021 xj=01753, x3, =0.0847, x}, = 00392, xi, = x§, =0.0318

This yields an average cost optimal policy R*=(0,0,1,1,1, 1)

N+1

with the minimal average cost Z x}, =0.206,Itisin
i=2

agreement with the results obtained by the policy-iteration
algorithm in problem 5.

39a. Conelusion

The policy-iteration formulation usually involves the writing of
its own code. However, the two methods are very efficient and
can be adopted for practical use by Doctors for the benefit of
patients, Abubakar (2011c).

40. AStudy of Desertificationin Nigeria

Vegetation means the plant cover of the earth which includes
trees and grasses of different kinds. Following Iloeje [1981] two
broad belts of plant groups can be found in Nigeria (forest and
savannah) and within each group it is possible to distinguish
three sub-types; salt-water swamp, fresh-water swamp and high
forest. The savannah comprises of guinea savannah, sudan
savannah and sahel savannah. The transition between the last
two grassregions is the subject of this study.

The area in desert is expanding, largely at the expense of
grassland and cropland, Lester (2005).
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An official federal government assessment placed the impact of
desert encroachment as causing the visible sign of the shift in
vegetation from grass and bushes, and in the final stages,
expansive desert like sand. This same danger assessment
estimated that between 50% and 75% of Bauchi, Borno, Gombe,
Jigawa, Kano, Katsina, Kebbi, Sokoto, Yobe, Adamawa, and
Zamfara states in Nigeria are being affected by desertification,
Copyright [2003].

Acevedo et al [1995] have described and applied a
correspondence between two major modelling approaches to
forest dynamics: Transition Markovian models and Gap models
or Jabowa-Foret type simulators. A transition model can be
derived from a gap model by defining states on the basis of
species, functional roles, vertical structure or other convenient
cover types. A gap-size plot can be assigned to one state
according to dominance of one of these cover types. A Semi-
Markov framework is used for the transition model by
considering not only the transition probabilities among the
states, but also the holding times in each transition. Application
inspatial are possible by considering collections of gap-size plots
and the proportion of these plots occupied by each state.

The application of a semi-markov model to desert encroachment
in the Northern part of Nigeria Abubakar (2005a), considered
linear distance of land in kilometres; it is observed that linear
distance is not very relevant to the land used for building and
agriculture. This study therefore considered the land measured
in square kilometres lost to desert in a year. Cost implication was
considered using Markov reward structure similar to that
reported in Abubakar et al (2007) in which value iteration
method was used.

Following the classification of the vegetation of Nigeria lloeje
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4

~ (1981) presented in figure 10 and gap size model proposed by
Acevedo et al (1995), we consider the following vegetation zones
states for a Markov Process.

Figure 10: The Vegetation Belts in Nigeria

Source: lloeje (1981

Apossible transition between the states is presented in figure 11.

STATE] SAHEL STATE 2 SUDAN STATE 3 GUINEA
DESERT had SAVANNA H »  SAVANNAH e
L STATE 4 HIGH STATE 5 FRESH STATE 6 SALT
FOREST — WATER SWAMP «—» WATER SWAMP

Figure1l1: A Transition diagram for the vegetation of Nigeria

PROBLEM 7:
Desertification and the associated persistent drought constitute
the most serious environmental problem facing the Northern
parts of Nigeria. The country is presently losing about 351,000
hectares of its landmass to desert conditions every year, which is
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advancing southwards at an estimated rate of 0.6 kilometers a
year, (Government of Nigeria [2003]). Suppose that the cost of
planting and taking care of the plants for the first year is
estimated to be three million Naira and also one million and two
hundred thousand Naira is required annually to maintain the
vegetation. Ourinterestis to determine the rate of desertification
in the long-run and also the probable cost of reclaiming a piece
desertland (sahel) to sudan savannahin a year.

40a. Results
Theresultis presented in figure12
APPENDIX B: The gragh of interval transition probabilitee s prasented inappendia 4

byt

e

a
010 I M 40 50 60 0 AD 30 100 113 130 130 140 150 160 170 180 180 t
Flg3: The Interval it ion in Migeria

Figurel2: The graph of interval transition probabilities

For the distance in kilometers, the result indicates a gradual loss
of the Sudan savanna to desert encroachment with a probability
of 0.00029 for the first year and converges to 0.0054 in about
sixty years (about 55km in 60years), that is, about 0.92km in a
year.

Further the result shows that some 92sq kilometres and 1,847sq
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kilometres of Nigeria cropland may be lost to desert in about 7
years and 192 years respectively. That is, nearly all the croplands
of the front line states (Borno, Yobe, Sokoto and others may be
claimed by desert.

The cost estimate shows that the initial cost of raising forest
constitutes the significant amount and that the subsequent cost
of maintenance may be secondary. Although, this is possible as
long as there are no human disturbances such as farming, grazing
and bush burning, Abubakar (2010, 2005a).

41. Concluding Remark

It has been observed that there exists a gap between
mathematical model builders and the intended model users.
Many reasons are attributed to this; generally many intended
model users do not understand the fundamental mathematics
and they are therefore skeptical about the results. Even then,
mostofthe end users are non-mathematicians and are easily put-
off by anything mathematical because they view mathematics as
just an abstract entity. Of course figures 1, 2, 3, etc. are abstract
entities but 1 tuber of yam, 3 men, 10million naira are not
abstract but concrete entities. Thus, mathematical modeling is
mathematics removed far away from abstraction and this has
been clearly shown here. The model builders on the other hand
do “water down” the rigors of mathematics by introducing
appropriate 'simplifying assumption(s)'. The ideal practice is to
take the midway between the two extremes and that is the basis
for the development of the models discussed in these studies.

The models studied are therefore not dependent on data and
therefore could be applied to study many other life processes
with little or no modification. They are capable of generating
relevant information that could be considered as very important
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ingredient for meaningful and purposeful planning for the
future.

50 Recommendations

A call could therefore be made to the Government and Non-
Governmental Organizations to extensively utilize the
quantitative information emanating from scientific research
particularly Mathematical models.

Further study is required to follow up and investigate the
relationship between the predicted values and the observed
values. This is possible only if the Government and stake holders
could provide the necessary fund.
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